

4. Посадки

4.1. Натяг

Кольца подшипника фиксируются на валу или в корпусе таким образом, чтобы не было скольжения или движения между сопряженными поверхностями во время работы или под нагрузкой.

Относительное движение, прокручивание между посадочными поверхностями подшипника и вала или корпуса может появиться в радиальном или осевом направлении или в направлении в сторону вращения. Это прокручивание при нагрузке может повредить кольца подшипника, вал или корпус в виде абразивного износа, что способствует возникновению трещин вследствие коррозионномеханического изнашивания. Это может привести к тому, что абразивные частицы попадут в подшипник и вызовут вибрацию, перегрев и пониженную эффективность вращения. Чтобы предотвратить скольжение между посадочными поверхностями подшипниковых колец и корпуса вала, подшипник должен быть установлен посадкой с натягом.

Самая эффективная посадка с натягом называется тугой посадкой или тепловой посадкой. Преимущество тугой посадки для тонкостенных подшипников в том, что она равномерно распределяет нагрузку по всей поверхности кольца без потери нагрузочной способности.

Однако, при тугой посадке теряется легкость сборки и демонтажа подшипника; а также, при использовании неразборного подшипника в качестве подшипника свободной опоры, осевое перемещение невозможно.

4.2. Расчет

Натяг и нагрузка

Минимальный требуемый натяг для внутренних колец, монтируемых на сплошной вал, при действии на них радиальной нагрузки, можно вычислить по формулам 4.1 и 4.2.

При
$$F_{\rm r} \leq 0.3 \ C_{\rm or}$$

$$\Delta d{\rm F} = 0.08 \ \sqrt{\frac{{\rm d} \cdot {\rm F}_{\rm r}}{{\rm B}}} \qquad \qquad 4.1$$
При $F_{\rm r} > 0.3 \ C_{\rm or}$

$$\Delta d{\rm F} = 0.02 \frac{{\rm F}_{\rm r}}{{\rm B}} \qquad \qquad 4.2$$

Где $\Delta_{\scriptscriptstyle dF}$ – требуемый эффективный натяг, мкм;

d – номинальный диаметр отверстия, мм;

В – ширина внутреннего кольца, мм;

F, – радиальная нагрузка, H;

С_{ог} – основная статичная нагрузка, Н.

Натяг и подъем температуры

Чтобы избежать ослабления внутреннего кольца на стальном валу из-за повышения температуры (разница между температурой подшипника и температурой окружающей среды), вызванного вращением подшипника, должна быть выбрана посадка с натягом. Необходимый натяг можно вычислить по формуле 4.3.

$$\Delta_{dT} = 0.0015 \cdot d \cdot \Delta T. \tag{4.3}$$

Где Δ_{dT} — необходимый эффективный натяг (для температуры), мкм;

ΔT – разница между температурой подшипника и температурой окружающей среды, °C;

d-диаметр отверстия подшипника, мм.

Эффективный натяг и относительный натяг

Эффективный натяг (действительный натяг после монтажа) отличается от относительного натяга, полученного путем измерения значения размеров. Разница заключается в шероховатости или небольших отклонениях совмещенных поверхностей, и это небольшое отклонение неровных поверхностей учитывается во время монтажа.

Отношение между эффективным и относительным натягом, которое варьируется в зависимости от окончательной обработки совмещенных поверхностей, вычисляется по формуле 4.4.

$$\Delta d_{\text{eff}} = \Delta d_{\text{f}} - G. \tag{4.4}$$

Где Δd_{eff} – эффективный натяг, мкм;

Δd_ғ – наблюдаемый натяг, мкм;

G = 1.0 - 2.5 мкм, для шлифованных валов;

G = 5.0 - 7.0 мкм, для точеных валов.

<u>Максимальный натяг</u>

Когда кольца подшипника устанавливаются тугой посадкой на вал или в корпус, может появиться напряженное состояние сопряженных поверхностей. В том случае, если натяг слишком большой, он может привести к повреждению подшипниковых колец и уменьшить продолжительность эксплуатации подшипника. По этим причинам максимальная величина натяга не должна превышать 1/1000 диаметра вала.

4.3. Выбор посадки

Выбор приемлемой посадки обычно основан на следующих факторах: 1) направление и природа нагрузки на подшипник; 2) в зависимости от того, вращается ли внутреннее или наружное кольцо; 3) в зависимости от того, меняется ли нагрузка на внутреннее или наружное кольцо; 4) в зависимости от того, статичная нагрузка или неопределенная.

Для подшипников, подвергающихся вращающим нагрузкам или неопределенным нагрузкам, рекомендуется тугая посадка; но для статичных нагрузок вполне достаточны переходная или свободная посадка.

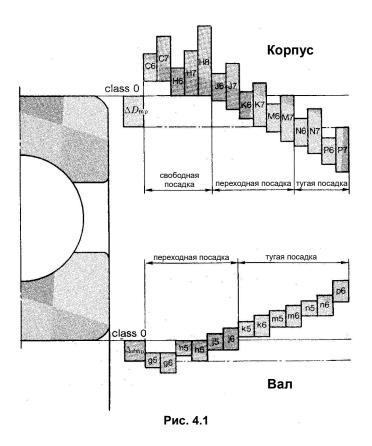
Натяг должен быть больше при тяжелых нагрузках на подшипник или вибрациях, а также в условиях динамической нагрузки. Также, посадка должна быть более тугой в случае, если подшипник устанавливается на полый вал или в корпус с тонкими стенками или же в корпусы, изготовленные из легких сплавов или пластика.

В случаях применения, когда необходимо поддерживать высокую точность вращения, должны быть установлены особо точные подшипники и валы, а также корпус без применения тугой посадки для того, чтобы обеспечить стабильное вращение подшипника. Следует избегать посадок с высоким натягом, поскольку они способствуют тому, что деформации вала или корпуса воздействуют на кольца подшипника, тем самым снижая точность вращения подшипника.

Так как монтаж и демонтаж затруднительны в случае, когда внутреннее и наружное кольцо неразборного подшипника (например, шарикового радиального подшипника) затянуты тугой посадкой, одно из колец должно иметь свободную посадку.

Таблица 4.1. Радиальная нагрузка и посадка подшипника

Вращение и нагрузка подшипника	Изображение		Нагруженное кольцо	Посадка
Внутреннее кольцо: вращается Наружное кольцо: вращается Направление нагрузки: постоянное		Статичная нагрузка	Вращающееся внутреннее кольцо	Внутреннее кольцо: тугая посадка
Внутреннее кольцо: неподвижно Наружное кольцо: вращается Направление нагрузки: вращающая	H	есбалансирован- ная нагрузка	Вращающееся наружное кольцо	Наружное кольцо: свободная посадка
Внутреннее кольцо: неподвижно Наружное кольцо: вращается Направление нагрузки: постоянное		Статичная нагрузка	Неподвижное внутреннее кольцо	Внутреннее кольцо: свободная посадка
Внутреннее кольцо: вращается Наружное кольцо: неподвижно Направление нагрузки: вращающая	H	есбалансирован- ная нагрузка	Вращающееся наружное кольцо	Наружное кольцо: тугая посадка



4.4. Рекомендуемые посадки

Метрический размер стандартного поля допуска для диаметров вала и диаметров отверстия корпуса определяются стандартами ISO 286.

Соответственно, посадка подшипника определяется точностью (размерный допуск) диаметра вала и диаметра отверстия корпуса. Широко используются посадки для разных допусков диаметра вала и отверстия корпуса. На рисунке 4.1 показаны отверстие подшипника и наружный диаметр подшипника.

Рекомендуемая посадка, относящаяся к основным факторам - размер подшипника и условия нагрузки - представлена в таблицах 4.2 и 4.3.

Таблица 4.2. Общие стандарты для посадки радиальных подшипников Посадка в корпус

Тип корпуса	Усл	Посадка корпуса	
Цельный или разъемный корпус	Статичная нагрузка на	Все условия нагрузки	H7
	наружное кольцо	Сопровождается нагревом через вал	G7
	Неопределенная нагрузка	Легкая и нормальная нагрузка	Js7
Цельный корпус		Нормальная и тяжелая нагрузка	K7
		Тяжелая ударная нагрузка	M7
	Вращающая нагрузка на наружное кольцо	Легкая или переменчивая нагрузка	M7
		Нормальная и тяжелая нагрузка	N7
		Тяжелая нагрузка	P7
		Тяжелая ударная нагрузка	P7

Примечание: данные посадки применяются для чугунных или стальных корпусов; для корпусов из легких сплавов необходима более тугая посадка.

Таблица 4.2. Радиальные подшипники с цилиндрическим отверстием, посадка на вал

Тип нагрузки	Тип подшипника	Диаметр вала	Тип нагрузки	Посадка на вал
нагрузка на по внутреннее Р	Шариковые подшипники	Все размеры	Плавающие подшипники со скользящим внутренним кольцом	g6 (g5)
	Роликовые подшипники	233 233 233	Радиально-упорные шарикоподшипники и конические роликовые подшипники с регулируемым внутренним кольцом	h6 (j6)
Циркуляцион- ная нагрузка или неопределенная нагрузка на внутреннее кольцо	Шариковые подшипники	до 40 мм	Нормальная нагрузка	j6 (j5)
		до 100 мм	Маленькая нагрузка	j6 (j5)
			Нормальная и высокая нагрузка	k6 (k5)
		до 200 мм	Маленькая нагрузка	k6 (k5)
			Нормальная и высокая нагрузка	m6 (m5)
		более 200 мм	Нормальная нагрузка	m6 (m5)
			Высокая ударная нагрузка	n6 (n5)
	Роликовые подшипники	до 60 мм	Маленькая нагрузка	j6 (j5)
			Нормальная и высокая нагрузка	k6 (k5)
		до 200 мм	Маленькая нагрузка	k6 (k5)
			Нормальная нагрузка	m6 (m5)
			Высокая нагрузка	n6 (n5)
		до 500 мм	Нормальная нагрузка	m6 (n5)
			Высокая ударная нагрузка	p6
		более 500 мм	Нормальная нагрузка	n6 (p6)
			Высокая нагрузка	p6

Таблица 4.3. Посадки на вал / в корпус для электромоторных подшипников

Вал или корпус	Шариковые радиальные подшипники			Цилиндрические роликовые подшипники		
	Диаметр вала или отверстия корпуса, мм		Посадка	Диаметр вала или отверстия корпуса, мм		Посадка
	свыше	включит.		свыше	включит.	
Вал	-	18	j5	-	40	k5
	18	100	k5	40	160	m5
	100	160	m5	160	200	n5
Корпус	Все размеры		H6 или J6	Все размеры		Н6 или Ј6